## Year 3

## Year 4

Using place value
Count in 100s
e.g. Know $475+200$ as 475, 575, 675


Add multiples of 10,100 and $£ 1$
e.g. $746+200$
e.g. $746+40$
e.g. $£ 6 \cdot 34+£ 5$ as $£ 6+£ 5$ and 34 p

Partitioning
e.g. $£ 8 \cdot 50+£ 3 \cdot 70$ as $£ 8+£ 3$ and 50 p +70 p and combine the totals: $£$ II $+£ 1 \cdot 20$
e.g. $347+36$ as 300 and $40+30$ and $7+6$ and combine the totals: $370+13=383$
e.g. $68+74$ as $60+70$ and $8+4$ and combine the totals: $130+12=142$


Using place value
Count in 1000s
e.g. Know $3475+2000$ as 3475, 4475, 5475

Partitioning
e.g. $746+40$
e.g. $746+203$ as $700+200$ and $6+3$
e.g. $134+707$ as $100+700$ and $4+7$

## Counting on

Add 2-digit numbers to 2-, 3- and 4-digit numbers by adding the multiple of 10 then the Is
e.g. $167+55$ as $167+50(217)+5=222$

Add near multiples of 10,100 and 1000
e.g. $467+199$
e.g. $3462+2999$


Count on to add 3-digit numbers and money
e.g. $463+124$ as $463+100(563)+20(583)+4=587$
e.g. $£ 4 \cdot 67+£ 5 \cdot 30$ as $£ q \cdot 67+30$ p

|  | Year 3 | Year 4 |
| :---: | :---: | :---: |
|  | Counting on <br> Add two 2-digit numbers by adding the multiple of 10 , then the Is $\text { e.g. } 67+55 \text { as } 67+50(I I 7)+5=122$ <br> Add near multiples of 10 and 100 $\begin{aligned} & \text { e.g. } 67+39 \\ & \text { e.g. } 364+199 \end{aligned}$ <br> Add pairs of 'friendly' 3-digit numbers $\text { e.g. } 548+120$ <br> Count on from 3-digit numbers $\text { e.g. } 247+34 \text { as } 247+30(277)+4=281$ <br> Using number facts <br> Know pairs which total each number to 20 $\begin{aligned} & \text { e.g. } 7+8=15 \\ & \text { e.g. } 12+6=18 \end{aligned}$ <br> Number bonds to 100 $\begin{aligned} & \text { e.g. } 35+65 \\ & \text { e.g. } 46+54 \\ & \text { e.g. } 73+27 \end{aligned}$ <br> $0000000000000000000000000000000000-00000000000000000000000000000000000000000000000000000000000000000$ <br> Add to the next 10 and the next 100 $\begin{aligned} & \text { e.g. } 176+4=180 \\ & \text { e.g. } 435+65=500 \end{aligned}$ | Using number facts <br> Number bonds to 100 and to the next multiple of 100 $\begin{aligned} & \text { e.g. } 288+12=300 \\ & \text { e.g } 1353+47=1400 \\ & \text { e.g. } 463+37=500 \end{aligned}$ <br> Number bonds to $£ \mathrm{l}$ and to the next whole pound $\begin{aligned} & \text { e.g. } 63 p+37 p=f 1 \\ & \text { e.g. } £ 3 \cdot 45+55 p=£ 4 \end{aligned}$ <br> Add to the next whole number <br> e.g. $4 \cdot 6+0.4$ <br> e.g. $7 \cdot 2+0 \cdot 8$ |


|  | Year 3 | Year 4 |
| :---: | :---: | :---: |
| C- | Build on partitioning to develop expanded column addition with two 3-digit numbers $\begin{array}{ll} \text { e.g. } 466+358 \\ & +\begin{array}{rrr} 400 & 60 & 6 \\ 300 & 50 & 8 \\ \hline 700 & 110 & 14 \\ \hline \end{array}=824 \end{array}$ <br> Use expanded column addition where digits in a column add to more than the column value $\text { e.g. } 466+358$ $\begin{array}{r} 400 \\ 300 \\ 300 \\ 50 \\ \hline \end{array}$ <br> Compact column addition with two or more 3-digit numbers or towers of 2-digit numbers $\text { e.g. } 347+286+495$ $\begin{array}{r} 347 \\ 286 \\ +\quad 495 \\ \hline 21 \\ \hline 1128 \\ \hline \end{array}$ <br> Compact column addition with 3- and 4-digit numbers Recognise like fractions that add to I <br> e.g. $\frac{1}{4}+\frac{3}{4}$ <br> e.g. $\frac{3}{5}+\frac{2}{5}$ | Build on expanded column addition to develop compact column addition with larger numbers $\text { e.g. } 1466+4868$ $\begin{array}{rrrr} 1000 & 400 & 60 & 6 \\ 4000 & 800 & 60 & 8 \\ +1000 & 100 & 10 & \\ \hline 6000 & 300 & 30 & 4 \\ \hline \end{array}$ <br> Compact column addition with larger numbers $\text { e.g. } 5347+2286+1495$ $\begin{array}{r} 5347 \\ 2286 \\ +\quad 1495 \\ 121 \\ \hline 9128 \\ \hline \end{array}$ <br> Use expanded and compact column addition to add amounts of money <br> Add like fractions $\text { e.g. } \frac{3}{8}+\frac{1}{8}+\frac{1}{8}$ |

Year 5

## Using place value

Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$
e.g. Know what 0.1 more than 0.51 is

| 10 s | 1 s | 0.1 s | 0.01 s |
| :---: | :---: | :---: | :---: |
|  | 0 | 5 | 1 |

## Partitioning

e.g. $2 \cdot 4+5 \cdot 8$ as $2+5$ and $0 \cdot 4+0 \cdot 8$ and combine the totals: $7+1 \cdot 2=8 \cdot 2$

| 0.1 | 0.2 | $0 \cdot 3$ | 0.4 | $0 \cdot 5$ | $0 \cdot 6$ | $0 \cdot 7$ | $0 \cdot 8$ | 0.9 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | $1 \cdot 2$ | 1.3 | $1 \cdot 4$ | 1.5 | $1 \cdot 6$ | 1.7 | 1.8 | 1.9 | 2 |
| $2 \cdot 1$ | $2 \cdot 2$ | $2 \cdot 3$ | $2 \cdot 4$ | $2 \cdot 5$ | $2 \cdot 6$ | $2 \cdot 7$ | $2 \cdot 8$ | 2.9 | 3 |
| $3 \cdot 1$ | 3.2 | $3 \cdot 3$ | $3 \cdot 4$ | $3 \cdot 5$ | 3.6 | $3 \cdot 7$ | $3 \cdot 8$ | 3.9 | 4 |
| 4.1 | 4.2 | $4 \cdot 3$ | $4 \cdot 4$ | $4 \cdot 5$ | $4 \cdot 6$ | $4 \cdot 7$ | $4 \cdot 8$ | 4.9 | 5 |
| $5 \cdot 1$ | $5 \cdot 2$ | $5 \cdot 3$ | $5 \cdot 4$ | $5 \cdot 5$ | $5 \cdot 6$ | $5 \cdot 7$ | $5 \cdot 8$ | 5.9 | 6 |
| 6.1 | $6 \cdot 2$ | $6 \cdot 3$ | $6 \cdot 4$ | $6 \cdot 5$ | $6 \cdot 6$ | $6 \cdot 7$ | $6 \cdot 8$ | 6.9 | 7 |
| 7.1 | $7 \cdot 2$ | 7.3 | $7 \cdot 4$ | $7 \cdot 5$ | 7.6 | 7.7 | 7.8 | 7.9 | 8 |
| 8.1 | $8 \cdot 2$ | $8 \cdot 3$ | $8 \cdot 4$ | 8.5 | $8 \cdot 6$ | $8 \cdot 7$ | 8.8 | 8.9 | 9 |
| 9.1 | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 | 9.7 | 9.8 | 9.9 | 10 |

Year 6

## Using place value

Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}, 0.001 \mathrm{~s}$
e.g. Know what 0.001 more than 6.725 is

Partitioning
e.g. $9.54+3.23$ as $9+3,0.5+0.2$ and $0.04+0.03$, to give $12 \cdot 77$

## Counting on

Add two decimal numbers by adding the Is, then the $0 \cdot 1 \mathrm{~s} / 0 \cdot 01 \mathrm{~s} / 0 \cdot 001 \mathrm{~s}$
e.g. $6 \cdot 314+3.006$ as $6.314+3(9.314)+0.006=9.32$

Add near multiples of 1
e.g. $6.345+0.999$
e.g. $5 \cdot 673+0.9$

Count on from large numbers
e.g. $16375+12003$ as $28375+3$

## Year 5

Counting on
Add two decimal numbers by adding the Is, then the $0 \cdot \mathrm{Is} / 0 \cdot 0 \mathrm{ls}$
e.g. $5 \cdot 72+3 \cdot 05$ as $5 \cdot 72+3(8 \cdot 72)+0 \cdot 05=8 \cdot 77$

Add near multiples of I
e.g. $6.34+0.99$
e.g. $5 \cdot 63+0.9$

Count on from large numbers
e.g. $6834+3005$ as $9834+5$

Using number facts
Number bonds to I and to the next whole number
e.g. $5 \cdot 7+0 \cdot 3$
e.g. $0 \cdot 4+0 \cdot 6$


Add to the next 10 from a decimal number
e.g. $7 \cdot 8+2 \cdot 2=10$

## Overview of Strategies and Methods - Addition (Draft)

## Year 5

Expanded column addition for money leading to compact column addition for adding several amounts of money
e.g. $£ 14 \cdot 64+£ 28 \cdot 78+£ / 2 \cdot 26$

| $£ 14$ | $60 p$ | $4 p$ |
| ---: | :---: | :---: |
| $£ 28$ | $70 p$ | $8 p$ |
| $+£ 12$ | $20 p$ | $6 p$ |
| $£ 1$ | $10 p$ |  |
| $£ 55$ | $60 p$ | $8 p$ |

Compact column addition to add pairs of 5-digit numbers
Continue to use column addition to add towers of several larger numbers
Use compact addition to add decimal numbers with up to 2 decimal places
e.g. $15 \cdot 68+27 \cdot 86$

$$
\begin{array}{r}
15.68 \\
+\quad 27.86 \\
\hline 11.1 \\
\hline 43.54
\end{array}
$$

Add related fractions

$$
\text { e.g. } \frac{3}{4}+\frac{1}{8}=\frac{7}{8}
$$

## Year 6

Compact column addition for adding several large numbers and decimal numbers with up to 2 decimal places
Compact column addition with money
e.g. $£ 14 \cdot 64+£ 28 \cdot 78+£ / 2 \cdot 26$

$$
\begin{array}{r}
£ \mid 4.64 \\
+\quad £ 28.78 \\
£ 12.26 \\
\quad 11 \cdot \mid \\
\hline £ 55.68 \\
\hline
\end{array}
$$

Add unlike fractions, including mixed numbers
e.g. $\frac{1}{4}+\frac{2}{3}=\frac{11}{12}$
e.g. $2 \frac{1}{4}+1 \frac{1}{3}=3 \frac{7}{12}$

|  | Year 3 | Year 4 |
| :---: | :---: | :---: |
| co | Taking away <br> Use place value to subtract <br> e.g. 348 - 300 <br> e.g. $348-40$ <br> e.g. 348 - 8 <br> Take away multiples of 10,100 and $£ 1$ <br> e.g. $476-40=436$ <br> e.g. $476-300=176$ <br> e. $9 £ 4 \cdot 76-£ 2=£ 2 \cdot 76$ <br> Partitioning <br> e.g. 68-42 as 60-40 and 8-2 <br> e.g. $£ 6 \cdot 84-£ 2.40$ as $£ 6-£ 2$ and $80 p-40$ p | Taking away <br> Use place value to subtract <br> e.g. 4748-4000 <br> e.g. 4748 - 8 <br> Take away multiples of $10,100,1000, £ 1,10 p$ or 0.1 <br> e.g. $8392-50$ <br> e.g. $6723-3000$ <br> e.g. $f 3.74-30 p$ <br> e.g. 5•6-0.2 <br> Partitioning <br> e.g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and $7 p-4 p$ <br> e.g. 7493-2020 as 7000-2000 and 90-20 <br> Count back $\text { e.g. } 6482-I 301 \text { as } 6482-1000(5482)-300(5182)-I=5181$ <br> Subtract near multiples of $10,100,1000$ or $£ 1$ <br> e.g. 3522 - 1999 <br> e.g. $£ 34.86-£ 19.99$ |

abacus

## Year 3

## Year 4

Count back in 100 s , 10 s then Is

$$
\text { e.g. } 763-I 2 I \text { as } 763-I 00(663)-20(643)-I=642
$$



Subtract near multiples of 10 and 100
e.g. $648-199$
e.g. $86-39$

Counting up
Find a difference between two numbers by counting up from the smaller to the larger
e.g. I2I-87


|  | Year 3 | Year 4 |
| :---: | :---: | :---: |
|  | Using number facts <br> Know pairs which total each number to 20 $\text { e.g. } 20-14=6$ <br> Number bonds to 100 $\begin{aligned} & \text { e.g. } 100-48=52 \\ & \text { e.g. } 100-35=65 \\ & 00000000000000000000000000000000000000000000000000000000000 \quad 00000000000000000000000000000000 \end{aligned}$ <br> Subtract using number facts to bridge back through a 10 $\text { e.g. } 42-5=42-2(40)-3=37$ | Using number facts <br> Number bonds to 10 and 100 and derived facts <br> e.g. $100-76=24$ <br> e.g. $1-0.6=0.4$ <br> Number bonds to $£ \mathrm{l}$ and $£ 10$ $\text { e.g. } £ 1 \cdot 00-86 p=14 p$ <br> e.g. $£ 10 \cdot 00-£ 3 \cdot 40=£ 6 \cdot 60$ |
| c <br> 0 <br> + <br> 0 <br> 0 <br> 4 <br> 0 <br> 0 <br> 0 <br> 0 <br> + <br> 2 <br> 3 | Develop counting up subtraction e.g. 200 - 167 $\begin{array}{r} 200-167=33 \\ 3+30=33 \\ 30 \end{array}$ | Expanded column subtraction with 3- and 4-digit numbers e.g. 726-358 $\begin{array}{rrr} 600 & 110 & 16 \\ 700 & 20 & 8 \\ -300 & 50 & 8 \\ \hline 300 & 60 & 8 \\ \hline \end{array}$ <br> Begin to develop compact column subtraction e.g. $726-358$ $\begin{array}{r} 61116 \\ 7 \not 28 \\ -358 \\ \hline 368 \\ \hline \end{array}$ |



## abacus

 overview of strategies and Methods - Subtraction (Draft)|  | Year 5 | Year 6 |
| :---: | :---: | :---: |
| U0! 0 0. | Taking away <br> Use place value to subtract decimals <br> e.g. 4.58-0.08 <br> e.g. 6.26-0.2 <br> Take away multiples of powers of 10 <br> e.g. $15672-300$ <br> e.g. $4 \cdot 82-2$ <br> e.g. $2.71-0.5$ <br> e.g. $4.68-0.02$ <br> Partitioning or counting back <br> e.g. 3964 - 1051 <br> e.g. 5.72-2.01 <br> Subtract near multiples of I, IO, IOO, 1000,10000 or $£ 1$ <br> e.g. 86456 - 9999 <br> e.g. $3.58-1.99$ <br> Counting up <br> Find a difference between two numbers by counting up from the smaller to the larger <br> e.g. $£ 12.05-£ 9.59$ <br> e.g. 2009-869 | Taking away <br> Use place value to subtract decimals $\begin{aligned} & \text { e.g. } 7.782-0.08 \\ & \text { e.g. } 16.263-0.2 \end{aligned}$ <br> Take away multiples of powers of 10 $\begin{aligned} & \text { e.g. } 132956-400 \\ & \text { e.g. } 686109-40000 \\ & \text { e.g. } 7 \cdot 823-0 \cdot 5 \end{aligned}$ <br> Partitioning or counting back $\begin{aligned} & \text { e.g. } 3964-1051 \\ & \text { e.g. } 5 \cdot 72-2 \cdot 01 \end{aligned}$ <br> Subtract near multiples of powers of 10 e.g. $360078-99998$ <br> e.g. $12.831-0.99$ |

abacus


## Year 5

Compact column subtraction for numbers with up to 5 digits e.g. I6 $324-8516$

$$
\begin{array}{rrrrr}
0 & 15 & 13 & 1 & 14 \\
x & 8 & \not 2 & \not 2 & \not 4 \\
- & 8 & 5 & 1 & 6 \\
\hline & 7 & 8 & 0 & 8 \\
\hline
\end{array}
$$

Continue to use counting up subtraction for subtractions involving money, including finding change
e.g. $£ 50-£ 28.76$


Use counting up subtraction to subtract decimal numbers e.g. $4.2-1.74$


Subtract related fractions
e.g. $\frac{3}{4}-\frac{1}{8}=\frac{5}{8}$

NB Counting up subtraction provides a default method for ALL children

## Year 6

Compact column subtraction for large numbers

$$
\text { e.g. } 34685-16458
$$

| 2 | 14 |  | 7 | 15 |
| ---: | ---: | ---: | ---: | ---: |
| $\not x$ | 4 | 6 | 8 | 8 |
| -1 | 6 | 4 | 5 | 8 |
| 1 | 8 | 2 | 2 | 7 |

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use counting up subtraction when dealing with money
e.g. $£ 100-£ 78.56$
e.g. $£ 45 \cdot 23-£ 27 \cdot 57$


Use counting up subtraction to subtract decimal numbers
e.g. 13•1-2.37 10


Subtract unlike fractions, including mixed numbers
e.g. $\frac{3}{4}-\frac{1}{3}=\frac{5}{12}$
e.g. $2 \frac{3}{4}-1 \frac{1}{3}=1 \frac{5}{12}$

NB Counting up subtraction provides a default method for ALL children


## Year 3

Year 4

## Doubling and halving

Find doubles of numbers to 50 using partitioning e.g. double 48


Use doubling as a strategy in multiplying by 2
e.g. $18 \times 2$ is double $18=36$

## Grouping

Recognise that multiplication is commutative
e.g. $4 \times 8=8 \times 4$

Multiply multiples of 10 by I-digit numbers
e.g. $30 \times 8=240$

Multiply 'friendly' 2-digit numbers by I-digit numbers e.g. $13 \times 4$

## Using number facts

Know doubles to double 20
e.g. double 15 is 30

Know doubles of multiples of 5 to 100
e.g. double 85 is 170

Know $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$ tables facts

## Grouping

Use partitioning to multiply 2-digit numbers by I-digit numbers e.g. $24 \times 5$


Multiply multiples of 100 and 1000 by I-digit numbers using tables facts
e.g. $400 \times 8=3200$

Multiply near multiples by rounding
e.g. $24 \times 19$ as $(24 \times 20)-24=456$

## Using number facts

Know times-tables up to $12 \times 12$

| $\times$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\mathbf{9}$ | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| $\mathbf{2}$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 11 | 24 |
| $\mathbf{3}$ | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 22 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 33 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 44 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 55 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 66 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 77 | 96 |
| $\mathbf{9}$ | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 88 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 99 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |



|  | Year 5 | Year 6 |
| :---: | :---: | :---: |
|  | Doubling and halving Double amounts of money using partitioning e.g. double $£ 6.73$ | Doubling and halving <br> Double decimal numbers with up to 2 places using partitioning e.g. double 36.73 |
|  | Use doubling and halving as a strategy in multiplying by $2,4,8,5$ and 20 <br> e.g. $58 \times 5$ is half of $58 \times 10(580)=290$ <br> Grouping <br> Multiply whole numbers and decimals by $10,100,1000$ $\text { e.g. } 3.4 \times 100=340$ <br> Use partitioning to multiply 'friendly' 2 - and 3-digit numbers by I-digit numbers <br> e.g. $402 \times 6$ as $400 \times 6$ (2400) and $2 \times 6(12)=2412$ <br> Use partitioning to multiply decimal numbers by I-digit numbers e.g. $4.5 \times 3$ as $4 \times 3$ ( 12 ) and $0.5 \times 3(1 \cdot 5)=13 \cdot 5$ <br> Multiply near multiples by rounding <br> e.g. $32 \times 29$ as $(32 \times 30)-32=928$ | Use doubling and halving as strategies in mental multiplication <br> Grouping <br> Use partitioning as a strategy in mental multiplication, as appropriate <br> e.g. $3060 \times 4$ as $3000 \times 4(12000)$ and $60 \times 4(240)=12240$ <br> e.g. $8.4 \times 8$ as $8 \times 8(64)$ and $0.4 \times 8(3.2)=67.2$ <br> Use factors in mental multiplication <br> e.g. $421 \times 6$ as $421 \times 3$ (I263) doubled $=2526$ <br> e.g. $3.42 \times 5$ as half of $3.42 \times 10=17.1$ <br> Multiply decimal numbers using near multiples by rounding e.g. $4.3 \times 19$ as $(4.3 \times 20)-4.3=81 \cdot 7$ |

## abacus





|  | Year 3 | Year 4 |
| :---: | :---: | :---: |
|  | Doubling and halving <br> Find half of even numbers to 100 using partitioning e.g. find half of 48 <br> Use halving as a strategy in dividing by 2 e.g. $36 \div 2$ is half of $36=18$ <br> Find half of odd numbers | Doubling and halving <br> Find half of even numbers to 200 and beyond using partitioning e.g. find half of 258 <br> Begin to halve amounts of money <br> e.g. $£ 9$ halved is $£ 4.50$ <br> Use halving as a strategy in dividing by 2,4 and 8 e.g. $164 \div 4$ is half of 164 (82) halved again $=41$ |

## Year 3

## Year 4

## Grouping

Recognise that division is not commutative
e.g. $16 \div 8$ does not equal $8 \div 16$

Relate division to multiplications 'with holes in'
e.g. $\times 5=30$ is the same calculation as $30 \div 5=$ _ thus we can count in 5 s to find the answer


Divide multiples of 10 by I-digit numbers
e.g. $240 \div 8=30$

Begin to use subtraction of multiples of 10 of the divisor to divide numbers above the IOth multiple
e.g. $52 \div 4$ is $10 \times 4(40)$ and $3 \times 4(12)=13$

| Year 3 Yearar |  | Year 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Using number facts <br> Know half of even numbers to 40 <br> Know half of multiples of 10 to 200 e.g. half of 170 is 85 <br> Know $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$ division facts | Using number facts <br> Know times-tables up to $\mathrm{I} 2 \times \mathrm{I} 2$ and all related division facts |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\times$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  | 12 |
| c |  | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | II |  | 12 |
|  |  | 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | I |  | 24 |
|  |  | 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 22 |  | 36 |
|  |  | 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 33 |  | 48 |
|  |  | 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 44 |  | 60 |
| $\bigcirc$ |  | 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 55 |  | 72 |
| - |  | 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 66 |  | 84 |
| © |  | 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 77 |  | 96 |
|  |  | 9 | q | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 88 |  | 08 |
|  |  | 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 99 |  | 120 |
|  |  | 11 | " | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 |  | 132 |
|  |  | 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 |  | 44 |
|  | Perform divisions just above the IOth multiple using written jottings, understanding how to give a remainder as a whole number <br> Use division facts to find unit and simple non-unit fractions of amounts within the times-tables <br> e.g. $\frac{3}{4}$ of 48 is $3 \times(48 \div 8)=36$ | Use a written version of a mental method to divide 2- and 3-digit numbers by I-digit numbers <br> e.g. $86 \div 3$ as $20 \times 3$ (60) and $8 \times 3$ (24), remainder 2 $\begin{aligned} & 86 \div 3=\square \\ & \square \times 3=86 \\ & \begin{array}{r} 20 \times 3=60 \\ 26 \end{array} \\ & \begin{array}{r} 8 \times 3=24 \\ \hline 28 \end{array} \end{aligned}$ <br> Use division facts to find unit and non-unit fractions of amounts within the times-tables $\text { e.g. } \frac{7}{8} \text { of } 56 \text { is } 7 \times(56 \div 8)=48$ |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Year 5 |
| :--- |
| Doubling and halving |
| Halve amounts of money using partitioning |
| e.g. half of $£ 14 \cdot 84$ is half of $£ 14$ ( $£ 7$ ) plus half of $84 p(42 p)$ |

## Doubling and halving

Halve decimal numbers with up to 2 places using partitioning e.g. half of 36.86 is half of 36 (I8) plus half of 0.86 ( 0.43 )


Use doubling and halving as strategies in mental division

## Grouping

Use the IOth, 20th, 30th, ... or 100th, 200th, 300th ... multiples of the divisor to divide large numbers
e.g. $378 \div 9$ as $40 \times 9(360)$ and $2 \times 9(18)$, remainder 2

$$
378 \div 9=\square
$$



Use tests for divisibility
e.g. 135 divides by 3 , as $I+3+5=9$ and 9 is in the $\times 3$ table

|  | Year 5 | Year 6 |
| :---: | :---: | :---: |
|  | Using number facts <br> Use division facts from the times-tables up to $12 \times 12$ to divide multiples of powers of 10 of the divisor <br> e.g. $3600 \div 9$ using $36 \div 9$ <br> Know square numbers and cube numbers | Using number facts <br> Use division facts from the times-tables up to $12 \times 12$ to divide decimal numbers by I-digit numbers $\text { e.g. } 1 \cdot 17 \div 3 \text { is } \frac{1}{100} \text { of } 117 \div 3(39)$ <br> Know tests of divisibility for numbers divisible by 2, 3, 4, 5, 9,10 and 25 |
|  | Use a written version of a mental strategy to divide 3-digit numbers by I-digit numbers <br> e.g. $326 \div 6$ as $50 \times 6$ (300) and $4 \times 6$ (24), remainder 2 $\begin{aligned} & 326 \div 6=\square \\ & \begin{array}{r} \square \times 6=326 \\ 50 \times 6=300 \\ \hline 4 \times 6= \end{array} \\ & \hline 5426 \div 6=54 \mathrm{r} 2 \\ & \hline 54 \end{aligned}$ | Short division of 3 - and 4-digit numbers by I-digit numbers e.g. $139 \div 3$ $3 \longdiv { 4 6 r \| }$ <br> Long division of 3 - and 4 -digit numbers by 2 -digit numbers e.g. $4176 \div 13$ $\begin{aligned} & 300+20+1, \text { r } 3 \\ & 1 3 \longdiv { 4 1 7 6 } \quad 4 1 7 6 \div 1 3 = 3 2 1 \text { r } 3 \\ & \begin{array}{l} -3900 \\ 276 \\ \frac{-260}{16} \\ \frac{-13}{3} \end{array} \end{aligned}$ |


|  | Year 5 | Year 6 |
| :---: | :---: | :---: |
|  | Short division of 3 - and 4-digit numbers by I-digit numbers e.g. $139 \div 3$ $3 \longdiv { 4 6 r \| }$ <br> Give remainders as whole numbers or as fractions <br> Find unit and non-unit fractions of large amounts $\text { e.g. } \frac{3}{5} \text { of } 265 \text { is } 3 \times(265 \div 5)=159$ <br> Turn improper fractions into mixed numbers and vice versa | Give remainders as whole numbers, fractions or decimals Use place value to divide I- and 2-place decimals by numbers $\leq 12$ e.g. $3.65 \div 5$ as $(365 \div 5) \div 100=0.73$ <br> Divide proper fractions by whole numbers |

